“Bitcoin and the Future of Money”: October 2013 ...

unSYSTEM Bitcoin conference - Time to rock the mothership! (Vienna, 1-3 Nov 2013)

unSYSTEM Bitcoin conference - Time to rock the mothership! (Vienna, 1-3 Nov 2013) submitted by ripper2345 to Bitcoin [link] [comments]

unSYSTEM Bitcoin conference - Time to rock the mothership! (Vienna, 1-3 Nov 2013)

unSYSTEM Bitcoin conference - Time to rock the mothership! (Vienna, 1-3 Nov 2013) submitted by genjix to Bitcoin [link] [comments]

Merged Mining: Analysis of Effects and Implications

Date: 2017-08-24
Author(s): Alexei Zamyatin, Edgar Weippl

Link to Paper


Abstract
Merged mining refers to the concept of mining more than one cryptocurrency without necessitating additional proof-of-work effort. Merged mining was introduced in 2011 as a boostrapping mechanism for new cryptocurrencies and countermeasures against the fragmentation of mining power across competing systems. Although merged mining has already been adopted by a number of cryptocurrencies, to this date little is known about the effects and implications.
In this thesis, we shed light on this topic area by performing a comprehensive analysis of merged mining in practice. As part of this analysis, we present a block attribution scheme for mining pools to assist in the evaluation of mining centralization. Our findings disclose that mining pools in merge-mined cryptocurrencies have operated at the edge of, and even beyond, the security guarantees offered by the underlying Nakamoto consensus for extended periods. We discuss the implications and security considerations for these cryptocurrencies and the mining ecosystem as a whole, and link our findings to the intended effects of merged mining.

Bibliography
[1] Coinmarketcap. http://coinmarketcap.com/. Accessed 2017-09-28.
[2] P2pool. http://p2pool.org/. Accessed: 2017-05-10.
[3] M. Ali, J. Nelson, R. Shea, and M. J. Freedman. Blockstack: Design and implementation of a global naming system with blockchains. http://www.the-blockchain.com/docs/BlockstackDesignandImplementationofaGlobalNamingSystem.pdf, 2016. Accessed: 2016-03-29.
[4] G. Andersen. Comment in "faster blocks vs bigger blocks". https://bitcointalk.org/index.php?topic=673415.msg7658481#msg7658481, 2014. Accessed: 2017-05-10.
[5] G. Andersen. [bitcoin-dev] weak block thoughts... https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-Septembe011157.html, 2015. Accessed: 2017-05-10.
[6] L. Anderson, R. Holz, A. Ponomarev, P. Rimba, and I. Weber. New kids on the block: an analysis of modern blockchains. http://arxiv.org/pdf/1606.06530.pdf, 2016. Accessed: 2016-07-04.
[7] E. Androulaki, S. Capkun, and G. O. Karame. Two bitcoins at the price of one? double-spending attacks on fast payments in bitcoin. In CCS, 2012.
[8] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra, J. Timón, and P. Wuille. Enabling blockchain innovations with pegged sidechains. http://newspaper23.com/ripped/2014/11/http-_____-___-_www___-blockstream___-com__-_sidechains.pdf, 2014. Accessed: 2017-09-28.
[9] A. Back et al. Hashcash - a denial of service counter-measure. http://www.hashcash.org/papers/hashcash.pdf, 2002. Accessed: 2017-09-28.
[10] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to better - how to make bitcoin a better currency. In Financial cryptography and data security, pages 399–414. Springer, 2012.
[11] J. Becker, D. Breuker, T. Heide, J. Holler, H. P. Rauer, and R. Böhme. Can we afford integrity by proof-of-work? scenarios inspired by the bitcoin currency. In WEIS. Springer, 2012.
[12] I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake. https://eprint.iacr.org/2016/919.pdf, 2016. Accessed: 2017-09-28.
[13] Bitcoin Community. Bitcoin developer guide- transaction data. https://bitcoin.org/en/developer-guide#term-merkle-tree. Accessed: 2017-06-05.
[14] Bitcoin Community. Bitcoin protocol documentation - merkle trees. https://en.bitcoin.it/wiki/Protocol_documentation#Merkle_Trees. Accessed: 2017-06-05.
[15] Bitcoin community. Bitcoin protocol rules. https://en.bitcoin.it/wiki/Protocol_rules. Accessed: 2017-08-22.
[16] V. Buterin. Chain interoperability. Technical report, Tech. rep. 1. R3CEV, 2016.
[17] W. Dai. bmoney. http://www.weidai.com/bmoney.txt, 1998. Accessed: 2017-09-28.
[18] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on, pages 1–10. IEEE, 2013.
[19] C. Decker and R. Wattenhofer. Bitcoin transaction malleability and mtgox. In Computer Security-ESORICS 2014, pages 313–326. Springer, 2014.
[20] Dogecoin community. Dogecoin reference implementation. https://github.com/dogecoin/
[27] A. Gervais, G. Karame, S. Capkun, and V. Capkun. Is bitcoin a decentralized currency? volume 12, pages 54–60, 2014.
[28] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 3–16. ACM, 2016.
[29] I. Giechaskiel, C. Cremers, and K. B. Rasmussen. On bitcoin security in the presence of broken cryptographic primitives. In European Symposium on Research in Computer Security (ESORICS), September 2016.
[30] J. Göbel, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor. Bitcoin blockchain dynamics: The selfish-mine strategy in the presence of propagation delay. Performance Evaluation, 104:23–41, 2016.
[31] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks on bitcoin’s peer-to-peer network. In 24th USENIX Security Symposium (USENIX Security 15), pages 129–144, 2015.
[32] Huntercoin developers. Huntercoin reference implementation. https://github.com/chronokings/huntercoin. Accessed: 2017-06-05.
[33] B. Jakobsson and A. Juels. Proofs of work and bread pudding protocols, Apr. 8 2008. US Patent 7,356,696; Accessed: 2017-06-05.
[34] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In Secure Information Networks, pages 258–272. Springer, 1999.
[35] A. Judmayer, N. Stifter, K. Krombholz, and E. Weippl. Blocks and chains: Introduction to bitcoin, cryptocurrencies, and their consensus mechanisms. Synthesis Lectures on Information Security, Privacy, & Trust, 9(1):1–123, 2017.
[36] A. Juels and J. G. Brainard. Client puzzles: A cryptographic countermeasure against connection depletion attacks. In NDSS, volume 99, pages 151–165, 1999.
[37] A. Juels and B. S. Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceedings of the 14th ACM conference on Computer and communications security, pages 584–597. Acm, 2007.
[38] H. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan. An empirical study of namecoin and lessons for decentralized namespace design. In WEIS, 2015.
[39] G. O. Karame, E. Androulaki, and S. Capkun. Double-spending fast payments in bitcoin. In Proceedings of the 2012 ACM conference on Computer and communications security, pages 906–917. ACM, 2012.
[40] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Čapkun. Misbehavior in bitcoin: A study of double-spending and accountability. volume 18, page 2. ACM, 2015.
[41] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology Conference, pages 357–388. Springer, 2017.
[42] S. King. Primecoin: Cryptocurrency with prime number proof-of-work. July 7th, 2013.
[43] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al. Jupyter notebooks-a publishing format for reproducible computational workflows. In ELPUB, pages 87–90, 2016.
[44] Lerner, Sergio D. Rootstock plattform. http://www.the-blockchain.com/docs/Rootstock-WhitePaper-Overview.pdf. Accessed: 2017-06-05.
[45] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosenschein. Bitcoin mining pools: A cooperative game theoretic analysis. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pages 919–927. International Foundation for Autonomous Agents and Multiagent Systems, 2015.
[46] Litecoin community. Litecoin reference implementation. https://github.com/litecoin-project/litecoin. Accessed: 2017-09-28.
[47] I. Maven. Apache maven project, 2011.
[48] G. Maxwell. Comment in "[bitcoin-dev] weak block thoughts...". https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-Septembe011198.html, 2016. Accessed: 2017-05-10.
[49] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and S. Savage. A fistful of bitcoins: characterizing payments among men with no names. In Proceedings of the 2013 conference on Internet measurement conference, pages 127–140. ACM, 2013.
[50] S. Micali. Algorand: The efficient and democratic ledger. http://arxiv.org/abs/1607.01341, 2016. Accessed: 2017-02-09.
[51] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing bitcoin work for data preservation. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 475–490. IEEE, 2014.
[52] A. Miller, A. Kosba, J. Katz, and E. Shi. Nonoutsourceable scratch-off puzzles to discourage bitcoin mining coalitions. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 680–691. ACM, 2015.
[53] B. Momjian. PostgreSQL: introduction and concepts, volume 192. Addison-Wesley New York, 2001.
[54] Myriad core developers. Myriadcoin reference implementation. https://github.com/myriadcoin/myriadcoin. Accessed: 2017-06-05.
[55] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf, Dec 2008. Accessed: 2017-09-28.
[56] S. Nakamoto. Merged mining specification. https://en.bitcoin.it/wiki/Merged_mining_specification, Apr 2011. Accessed: 2017-09-28.
[57] Namecoin Community. Merged mining. https://github.com/namecoin/wiki/blob/masteMerged-Mining.mediawiki#Goal_of_this_namecoin_change. Accessed: 2017-08-20.
[58] Namecoin community. Namecoin reference implementation. https://github.com/namecoin/namecoin. Accessed: 2017-09-28.
[59] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press, 2016.
[60] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing selfish mining and combining with an eclipse attack. In 1st IEEE European Symposium on Security and Privacy, 2016. IEEE, 2016.
[61] K. J. O’Dwyer and D. Malone. Bitcoin mining and its energy footprint. 2014.
[62] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 643–673. Springer, 2017.
[63] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of cryptology, 13(3):361–396, 2000.
[64] Pseudonymous("TierNolan"). Decoupling transactions and pow. https://bitcointalk.org/index.php?topic=179598.0, 2013. Accessed: 2017-05-10.
[65] P. R. Rizun. Subchains: A technique to scale bitcoin and improve the user experience. Ledger, 1:38–52, 2016.
[66] K. Rosenbaum. Weak blocks - the good and the bad. http://popeller.io/index.php/2016/01/19/weak-blocks-the-good-and-the-bad/, 2016. Accessed: 2017-05-10.
[67] K. Rosenbaum and R. Russell. Iblt and weak block propagation performance. Scaling Bitcoin Hong Kong (6 December 2015), 2015.
[68] M. Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv preprint arXiv:1112.4980, 2011.
[69] M. Rosenfeld. Analysis of hashrate-based double spending. http://arxiv.org/abs/1402.2009, 2014. Accessed: 2016-03-09.
[70] R. Russel. Weak block simulator for bitcoin. https://github.com/rustyrussell/weak-blocks, 2014. Accessed: 2017-05-10.
[71] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in bitcoin. In International Conference on Financial Cryptography and Data Security, pages 515–532. Springer, 2016.
[72] Sathoshi Nakamoto. Comment in "bitdns and generalizing bitcoin" bitcointalk thread. https://bitcointalk.org/index.php?topic=1790.msg28696#msg28696. Accessed: 2017-06-05.
[73] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden. Incentive compatibility of bitcoin mining pool reward functions. In FC ’16: Proceedings of the the 20th International Conference on Financial Cryptography, February 2016.
[74] B. Sengupta, S. Bag, S. Ruj, and K. Sakurai. Retricoin: Bitcoin based on compact proofs of retrievability. In Proceedings of the 17th International Conference on Distributed Computing and Networking, page 14. ACM, 2016.
[75] N. Szabo. Bit gold. http://unenumerated.blogspot.co.at/2005/12/bit-gold.html, 2005. Accessed: 2017-09-28.
[76] M. B. Taylor. Bitcoin and the age of bespoke silicon. In Proceedings of the 2013 International Conference on Compilers, Architectures and Synthesis for Embedded Systems, page 16. IEEE Press, 2013.
[77] Unitus developers. Unitus reference implementation. https://github.com/unitusdev/unitus. Accessed: 2017-08-22.
[78] M. Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft replication. In International Workshop on Open Problems in Network Security, pages 112–125. Springer, 2015.
[79] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson, M. Overdijk, C. Dupuis, and S. Deleuze. Spring boot reference guide. Technical report, 2013-2016.
[80] A. Zamyatin. Name-squatting in namecoin. (unpublished BSc thesis, Vienna University of Technology), 2015.
submitted by dj-gutz to myrXiv [link] [comments]

An Incentive Analysis of some Bitcoin Fee Designs

arXiv:1811.02351
Date: 2018-11-11
Author(s): Andrew Chi-Chih Yao

Link to Paper


Abstract
In the Bitcoin system, miners are incentivized to join the system and validate transactions through fees paid by the users. A simple "pay your bid" auction has been employed to determine the transaction fees. Recently, Lavi, Sattath and Zohar [LSZ17] proposed an alternative fee design, called the monopolistic price (MP) mechanism, aimed at improving the revenue for the miners. Although MP is not strictly incentive compatible (IC), they studied how close to IC the mechanism is for iid distributions, and conjectured that it is nearly IC asymptotically based on extensive simulations and some analysis. In this paper, we prove that the MP mechanism is nearly incentive compatible for any iid distribution as the number of users grows large. This holds true with respect to other attacks such as splitting bids. We also prove a conjecture in [LSZ17] that MP dominates the RSOP auction in revenue (originally defined in Goldberg et al. [GHKSW06] for digital goods). These results lend support to MP as a Bitcoin fee design candidate. Additionally, we explore some possible intrinsic correlations between incentive compatibility and revenue in general.

References
[1] M. Babaioff M, S. Dobzinski, S. Oren and A. Zohar. On Bitcoin and red balloons. In ACM Conference on Electronic Commerce, EC ’12, Valencia, Spain, 2012, pages 56-73.
[2] J. Bonneau. Why buy them when you can rent- bribery attacks on Bitcoin-style consensus. In Financial Cryptograpphy and Data Security - FC 2016 International Workshops, BITCOIN, VOTING and WAHC, Christ Church, Barbados, 2016. Revised Selected Papers, pages 19-26.
[3] M. Carlsten, H. A. Kalodner, S. M. Weinberg nd A. Narayanan. On the instability of Bitcoin without the block reward. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016, pages 154-167.
[4] A. V. Goldberg, J. D. Hartline and A. Wright. Competitive auctions and digital goods. In Proceedings of SODA 2001, pages 735-744
[5] A. V. Goldberg, J. D. Hartline, A. R. Karlin, M. E. Saks and A. Wright. Competative auctions. Games and Econommic Behavior, 55(2): 242-269, 2006.
[6] J. K. Kroll, I. C. Davey and E. W. Felten. The economics of Bitcoin mining, or Bitcoin in the resence of adversaries. In Proceedings of WEIS, Volume 2013.
[7] G. Huberman, J. D. Leshno and C. C. Moallemi. Monopoly without a monopolist: An economic analysis of the Bitcoin payment system. https://ssrn.com/abstract=3025604, 2017
[8] R. Lavi, O. Sattath and A. Zohar. Redesigning Bitcoin’s fee market. arXiv: 1709.08881v1 [cs.CR] 26 Sep 2017.
submitted by dj-gutz to myrXiv [link] [comments]

Decent - DCT

Company
Decent / Decent Foundation
Value Proposition
DECENT is a decentralized content distribution platform that utilizes blockchain technology to ensure trust and security. The platform will be open source. Freedom from censorship, fair rewards for publishers and anonymity (if so desired) are mentioned as key advantages.
Whitepaper
Customer Segment
Content producers, content consumers, miners (called "Publishers" by Decent).
Technology
The whitepaper is not yet entirely clear on the tech stack that will be used. Blockchain technologies are mentioned, Kademlia DHT and Bittorrent for content distribution. Apparently, parts of the software are already in development.
Team
The company mentions a Swiss and a Slovak office. There are three Founders: Matej Boda, Matej Michalko and Wayman Kwan. The core team consists of 13 persons total, plus four ambassadors and four advisors.
CV Matej B (from their website): Matej was always interested in new technologies and future progress. During his studies at the Technical University in Bratislava he took an internship in BMW Munich as a technical concept creator. Although his background is in applied mechanics, he became involved in blockchain based technologies in 2013. Fascinated by the decentralized protocols, he was interested in the cryptocurrency mining at first. Since then he has supported the community by helping to organize events such as Central European Bitcoin Expo Vienna and Bitcoin 2 Business Congress Brussels, advising on mining technologies and discussing future possibilities for blockchain. Currently he is focusing on the main project – DECENT platform – he co-founded.
CV Matej M (from their website): Matej’s interest in online privacy was fueled first while studying Computer Science at the Swiss Federal Institute of Technology in Lausanne where he completed a project concerning the privacy protection of mobile phone users for Nokia Research Center. Since then he became more and more involved with Bitcoin. Mining at his own laptop in the beginning, then organizing cryptocurrency conferences around the world (Austria, China, Belgium, UK, …). He also founded the first Bitcoin Marketing agency in the world. Matej has operated from multiple countries, including the UK, Isle of Man, Switzerland, Slovakia or China. Since the beginning he is passionate about the immense potential of blockchain technologies. Thereby, he founded DECENT last year.
CV Wayman Kwan (from their website): Wayman Kwan is a venture capital investor partner of Elements Capital LLC, USA. He was responsible for the business development, financing and promotional activities in several international companies. He founded a private information services team providing finance and investment advice to the companies around Asia and became a partner in Malaysian and Chinese Joint Venture. He is a well-recognized investment advisor and also participates in many other non-profit and charitable organizations such as Rotary International, Negeri Sembilan Royal Anti-drug Association and Malacca Shooting Association.
Team Page
ICO offering details
ICO starts at 1:00pm GMT Sunday, 11th of September. Duration: 8 weeks.
70% of the total available DCT ("fuel of the network") will be distributed initially, 30% will be made available to miners later on. Of the initial distribution, 10% of the tokens go to the Decent Foundation, 2% go into an "Investment Fund", 1'000'000 go to the bounty program, 3'000'000 go to the marketing program. The rest is sold in the ICO. I did not find the total number of tokens to be created, only percentage numbers. Sale starts at 5000DCT/BTC (+50% bonus on the first day, up to 10M DCT), going down to 3000DCT/BTC over time.
Update: Decent just reiterated that "The final amount of DCT will be determined by ICO results. DCT distributed during ICO will represent 70% of the total DCT ever issued." on Bitcointalk. I find the combination of relative and absolute numbers a bit confusing, but in the end, 70% seems to go out to ICO participants (plus the devs), 30% to miners.
Update 2: Decent made the 50% bonus "dependable" by removing the 10M cap and prolonging it until today (September 11th), 11PM GMT. Good reaction.
ICO page - Homepage
Donations
Since we are talking about paid content: in case you'd like to make a small donation to the writer of this post, please send your Satoshis to: 1JsiFGmKZvr3iR4KejpMswmapCoB2oWsog
submitted by thisischris to icocrypto [link] [comments]

Bitcoin 2013 conference - Lasse Olesen - Seasteading - Entrepreneurship in Government on High Seas Bitcoin 2013 conference - Yifu Guo - Avalon ASIC Bitcoin 2013 Conference - Tuur Demeester - Why You Should ... Bitcoin 2013 conference - Ian Miers - Zerocoin - A New Anonymous eCash Extension for Bitcoin Bitcoin 2013 conference - Noah Silverman - Statistical Analysis of Price Swings and Market Pricing

Bitcoin Conference. The European Bitcoin convention - Amsterdam, Netherlands, September 27, 2013. Crypto-currency conference - Atlanta, United States, October 5, 2013. Bitcoin 2013: unSYSTEM - Vienna, Austria, November 1, 2013. BitcoinExpo 2013 - London, United Kingdom, November 30, 2013. While some of these may be a bit farther than the new and novice bitcoiners may want to travel, there is ... On October 5, Atlanta, GA will host the 2013 CrytoCurrency Conference. Entitled, “Bitcoin and the Future of Money,” the conference aims at featuring the four year anniversary of Bitcoin’s launch in October of 2009. The conference team posted the following press release. Atlanta to Host CryptoCurrency Conference Bitcoin Conference 2013 (San Jose) The list of panelists for the Bitcoin Conference 2013 (the one in San Jose, California, there's also going to be a second one in November in Vienna) has been announced and I'm one of them. If you're in San Jose between May 17th and 19th, you can meet a lot of people involved in Bitcoin. Posted by Peter Šurda at 22:36. Email This BlogThis! Share to Twitter ... Two large gatherings are planned this year that center on bitcoin and other aspects of alternative economies and societies. Bitcoin faithful plan 2013 conferences - CoinDesk News Learn Videos Research The two conferences will cover different topics and will be held in California and Vienna. The first, sponsored by the Bitcoin Foundation, will be held in San Jose California on May 17-19 and is titled “The Future of Payments”. Discussion will be on Bitcoin technology, Bitcoin mining, Bitcoin business and regulatory issues.

[index] [38938] [34350] [4085] [25923] [31977] [49237] [10246] [10151] [3305] [5626]

Bitcoin 2013 conference - Lasse Olesen - Seasteading - Entrepreneurship in Government on High Seas

Recorded at the Bitcoin 2013 conference in San Jose, CA. Conference sponsored by Bitcoin Foundation. Red Pill Recording recorded this talk. We volunteered our time to produce this video. This video is unavailable. Watch Queue Queue. Watch Queue Queue Recorded at the Bitcoin 2013 conference in San Jose, CA. Conference sponsored by Bitcoin Foundation. Red Pill Recording recorded this talk. We volunteered our time to produce this video. Recorded at the Bitcoin 2013 conference in San Jose, CA. Conference sponsored by Bitcoin Foundation. Red Pill Recording recorded this talk. We volunteered our time to produce this video. Recorded at the Bitcoin 2013 conference in San Jose, CA. Conference sponsored by Bitcoin Foundation. Red Pill Recording recorded this talk. We volunteered our time to produce this video.

#